Polynomial Factorization Statistics and Point Configurations in \mathbb{R}^{3}

Trevor Hyde University of Michigan

Statistical properties of polynomials over finite fields.

Symmetric group action on configuration spaces.

Expected values of arithmetic functions.
characters of cohomology representations.

Ex. The following facts are equivalent.
Average number of \mathbb{F}_{q}-roots of a degree d polynomial in $\mathbb{F}_{q}[x]$ is

$$
1+\frac{1}{q}+\frac{1}{q^{2}}+\ldots+\frac{1}{q^{d-1}}
$$

Let ψ_{d}^{k} be the S_{d}-character of $H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$, then

$$
\left\langle 1_{d}, \psi_{d}^{0}\right\rangle=1 \quad\left\langle\operatorname{Std}_{d}, \psi_{d}^{k}\right\rangle=1 \quad 1 \leq k \leq d-1
$$

Polynomials

Poly $_{d}\left(\mathbb{F}_{q}\right):=\left\{\right.$ monic deg d polynomials $\left.f(x) \in \mathbb{F}_{q}[x]\right\}$
The factorization type of $f(x) \in \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right)$ is the partition $\lambda_{f} \vdash d$ given by the degrees of the irred. factors of $f(x)$.

Ex. The factorization type of

$$
f(x)=x(x+1)^{2}\left(x^{2}+1\right) \in \operatorname{Poly}_{5}\left(\mathbb{F}_{3}\right)
$$

is $\lambda_{f}=\left(1^{3} 2^{1}\right)$.
Note: factorization type is insensitive to factor multiplicity,

$$
g(x)=x^{2} \quad h(x)=x(x+1)
$$

both have factorization type $\left(1^{2}\right)$.

Factorization Statistics

A factorization statistic $P: \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{Q}$ is a function where $P(f)$ depends only on the factorization type λ_{f}.

Examples:

$R(f)=\# \mathbb{F}_{q}$-roots of f with multiplicity

$$
L(f)=(-1)^{\# \text { irred factors of } f \quad \text { (Liouville function) }}
$$

$Q(f)=$ \# red. quad. factors - \# irred. quad. factors

If $f(x)=x(x+1)^{2}\left(x^{2}+1\right) \in \operatorname{Poly}_{5}\left(\mathbb{F}_{3}\right)$, then

- $R(f)=3$
- $L(f)=(-1)^{4}=1$
- $Q(f)=3-1=2$

Factorization Statistics

A factorization statistic $P: \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{Q}$ is a function where $P(f)$ depends only on the factorization type λ_{f}.

Expected Values

If P is a factorization statistic, let $E_{d}(P)$ denote the expected value of P on $\mathrm{Poly}_{d}\left(\mathbb{F}_{q}\right)$

$$
E_{d}(P)=\frac{1}{q^{d}} \sum_{f \in \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right)} P(f)
$$

Ex. (Quadratic excess)
$Q(f)=$ \# red. quad. factors - \# irred. quad. factors

d	$E_{d}(Q)$
3	$\frac{2}{q}+\frac{1}{q^{2}}$
4	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{2}{q^{3}}$
5	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{2}{q^{4}}$
6	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{4}{q^{4}}+\frac{3}{q^{5}}$
10	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{4}{q^{4}}+\frac{6}{q^{5}}+\frac{6}{q^{6}}+\frac{8}{q^{7}}+\frac{8}{q^{8}}+\frac{5}{q^{9}}$

Expected Values

$Q(f)=$ \# red. quad. factors - \# irred. quad. factors

d	$E_{d}(Q)$	$E_{d}(Q)_{q=1}$
3	$\frac{2}{q}+\frac{1}{q^{2}}$	3
4	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{2}{q^{3}}$	6
5	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{2}{q^{4}}$	10
6	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{4}{q^{4}}+\frac{3}{q^{5}}$	15
10	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{4}{q^{4}}+\frac{6}{q^{5}}+\frac{6}{q^{6}}+\frac{8}{q^{7}}+\frac{8}{q^{8}}+\frac{5}{q^{9}}$	45

degree $d-1$
positive integer coefficients
coefficients sum to $\binom{d}{2}$
coefficientwise convergence as $d \rightarrow \infty$

Configuration Space

Let X be a topological space

$$
\operatorname{PConf}_{d}(X):=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in X^{d}: x_{i} \neq x_{j}\right\}
$$

Symmetric group S_{d} acts freely on $\operatorname{PConf}_{d}(X)$ by permuting coordinates.
$H^{k}\left(\operatorname{PConf}_{d}(X), \mathbb{Q}\right)$ is an S_{d}-representation for each k.

Twisted Grothendieck-Lefschetz

Let $\operatorname{Poly}_{d}^{\text {sf }}\left(\mathbb{F}_{q}\right) \subseteq \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right)$ denote the subset of squarefree polynomials.

Let ϕ_{d}^{k} be the S_{d}-character of $H^{k}\left(\operatorname{PConf}_{d}(\mathbb{C}), \mathbb{Q}\right)$.

Theorem (Church, Ellenberg, Farb, 2014)

If P is a factorization statistic, then

$$
\frac{1}{q^{d}} \sum_{f \in \text { Poly }_{d}^{\mathrm{sf}}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k=0}^{d-1}(-1)^{k} \frac{\left\langle P, \phi_{d}^{k}\right\rangle}{q^{k}} .
$$

Geometric Idea

Theorem (Church, Ellenberg, Farb, 2014)

If P is a factorization statistic, then

$$
\frac{1}{q^{d}} \sum_{f \in \operatorname{Poly}_{d}^{s f}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k=0}^{d-1}(-1)^{k} \frac{\left\langle P, \phi_{d}^{k}\right\rangle}{q^{k}} .
$$

- $\operatorname{Poly}_{d}^{\mathrm{sf}}(\mathbb{C}) \cong \operatorname{Conf}_{d}(\mathbb{C}):=\operatorname{PConf}_{d}(\mathbb{C}) / S_{d}$

$$
\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{d}\right) \Longleftrightarrow\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right\}
$$

Grothendieck-Lefschetz trace formula with "twisted coefficients".

Main Result

Let ψ_{d}^{k} be the S_{d}-character of $H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$.

Theorem (H. 2017)

If P is a factorization statistic, then

$$
E_{d}(P):=\frac{1}{q^{d}} \sum_{f \in \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k=0}^{d-1} \frac{\left\langle P, \psi_{d}^{k}\right\rangle}{q^{k}}
$$

Geometric idea = ??? (in progress)
Proof uses cycle index series for cohomology reps derived from Orlik-Solomon algebras.
(Lehrer-Solomon, Hanlon, Sundaram-Welker.)
Same technique proves the Church, Ellenberg, Farb result.

Quadratic Excess Revisited

$Q(f)=$ \# red. quad. factors - \# irred. quad. factors

$$
E_{d}(Q)=\sum_{k=0}^{d-1} \frac{\left\langle Q, \psi_{d}^{k}\right\rangle}{q^{k}}
$$

d	$E_{d}(Q)$
3	$\frac{2}{q}+\frac{1}{q^{2}}$
4	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{2}{q^{3}}$
5	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{2}{q^{4}}$
6	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{4}{q^{4}}+\frac{3}{q^{5}}$
10	$\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{4}{q^{4}}+\frac{6}{q^{5}}+\frac{6}{q^{6}}+\frac{8}{q^{7}}+\frac{8}{q^{8}}+\frac{5}{q^{9}}$

Quadratic Excess is a Character

$Q(f)=$ \# red. quad. factors - \# irred. quad. factors
$\mathbb{Q}[d]$ is the permutation rep. of S_{d} with basis $e_{1}, e_{2}, \ldots, e_{d}$.
$\bigwedge^{2} \mathbb{Q}[d]$ is an S_{d}-rep. with basis $e_{i} \wedge e_{j}$ such that $i<j$.
If $\sigma \in S_{d}$, then

$$
\begin{aligned}
\operatorname{Tr}_{\wedge^{2} \mathbb{Q}[d]}(\sigma) & =\#\{i<j: \sigma \text { fixes } i, j\}-\#\{i<j: \sigma \text { transposes } i, j\} \\
& =\binom{x_{1}(\sigma)}{2}-\binom{x_{2}(\sigma)}{1} \\
& =Q(\sigma)
\end{aligned}
$$

Therefore Q, viewed as an S_{d}-class function, is a character!

Coefficientwise Convergence

Let x_{j} for $j \geq 1$ be the class function

$$
\begin{aligned}
x_{j}(\sigma) & =\# j \text {-cycles of } \sigma \\
x_{j}(f) & =\# \text { deg. } j \text { irreducible factors of } f
\end{aligned}
$$

$P \in \mathbb{Q}\left[x_{1}, x_{2}, \ldots\right]$ are called character polynomials.

Theorem (H. 2017)

If P is a character polynomial, then the expected values $E_{d}(P)$ of
P on Poly $d\left(\mathbb{F}_{q}\right)$ converge coefficientwise as $d \rightarrow \infty$ to

$$
\lim _{d \rightarrow \infty} E_{d}(P)=\sum_{k=0}^{\infty} \frac{\left\langle P, \psi^{k}\right\rangle}{q^{k}},
$$

where $\left\langle P, \psi^{k}\right\rangle:=\lim _{d \rightarrow \infty}\left\langle P, \psi_{d}^{k}\right\rangle$.
Key fact: $H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$ exhibits representation stability.

Quadratic Excess is a Character Polynomial

$$
Q=\binom{x_{1}}{2}-\binom{x_{2}}{1} \Longrightarrow Q \text { is a char. poly. }
$$

Therefore $E_{d}(Q)$ converge coefficientwise as $d \rightarrow \infty$

$$
\begin{array}{|c|l|}
\hline d & E_{d}(Q) \\
\hline 3 & \frac{2}{q}+\frac{1}{q^{2}} \\
4 & \frac{2}{q}+\frac{2}{q^{2}}+\frac{2}{q^{3}} \\
5 & \frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{2}{q^{4}} \\
6 & \frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{4}{q^{4}}+\frac{3}{q^{5}} \\
10 & \frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{4}{q^{4}}+\frac{6}{q^{5}}+\frac{6}{q^{6}}+\frac{8}{q^{7}}+\frac{8}{q^{8}}+\frac{5}{q^{9}} \\
\hline
\end{array}
$$

$$
\lim _{d \rightarrow \infty} E_{d}(Q)=\frac{2}{q}+\frac{2}{q^{2}}+\frac{4}{q^{3}}+\frac{4}{q^{4}}+\frac{6}{q^{5}}+\frac{6}{q^{6}}+\frac{8}{q^{7}}+\frac{8}{q^{8}}+\ldots
$$

Regular Representation

Theorem

The total cohomology of $\mathrm{PConf}_{d}\left(\mathbb{R}^{3}\right)$ is isomorphic to the regular representation.

$$
\bigoplus_{k=0}^{d-1} H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right) \cong \mathbb{Q}\left[S_{d}\right]
$$

In other words,

$$
\sum_{k=0}^{d-1} \psi_{d}^{k}=\rho
$$

where ρ is the character of the regular representation $\mathbb{Q}\left[S_{d}\right]$.

Regular Representation

Theorem

The total cohomology of $\mathrm{PConf}_{d}\left(\mathbb{R}^{3}\right)$ is isomorphic to the regular representation.

$$
\bigoplus_{k=0}^{d-1} H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right) \cong \mathbb{Q}\left[S_{d}\right]
$$

Coefficient Sum

Sum of $E_{d}(P)$ coeffs. is the same as the evaluation $E_{d}(P)_{q=1}$.

Corollary (H. 2017)

If P is a factorization statistic, then

$$
E_{d}(P)_{q=1}=P\left(1^{d}\right)
$$

If P is the character of an S_{d}-rep. V, then

$$
E_{d}(P)_{q=1}=\operatorname{dim} V
$$

Ex. $\operatorname{dim} \bigwedge^{2} \mathbb{Q}[d]=\binom{d}{2}$, hence

$$
E_{d}(Q)_{q=1}=\binom{d}{2}
$$

Coefficient Sum

Corollary (H. 2017)

If P is a factorization statistic, then
$E_{d}(P)_{q=1}=P\left(1^{d}\right)$.
If P is the character of an S_{d}-rep. V, then

$$
E_{d}(P)_{q=1}=\operatorname{dim} V
$$

Proof.

$$
E_{d}(P)_{q=1}=\sum_{k=0}^{d-1}\left\langle P, \psi_{d}^{k}\right\rangle=\left\langle P, \sum_{k=0}^{d-1} \psi_{d}^{k}\right\rangle=\left\langle P, \mathbb{Q}\left[S_{d}\right]\right\rangle=P\left(1^{d}\right)
$$

Global Constraint

$$
\bigoplus_{k=0}^{d-1} H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right) \cong \mathbb{Q}\left[S_{d}\right]
$$

Distribution of the irred. components of $\mathbb{Q}\left[S_{d}\right]$ among $H^{*}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$ determines the expected values of polynomial factorization statistics!

$$
E_{d}(P)=\sum_{k=0}^{d-1} \frac{\left\langle P, \psi_{d}^{k}\right\rangle}{q^{k}} .
$$

Trivial Representation

The trivial rep. 1 of S_{d} is one dimensional, hence there is exactly one k for which $H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$ has a trivial component.

Trivial character is the constant $=1$ factorization statistic.
Therefore

$$
1=E_{d}(1)=\sum_{k=0}^{d-1} \frac{\left\langle 1, \psi_{d}^{k}\right\rangle}{q^{k}}
$$

hence $H^{0}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$ has the trivial component.
$\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right)$ is path connected, so $H^{0}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right) \cong \mathbf{1}$.

Trivial Representation

$$
H^{0}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right) \cong \mathbf{1} \Longrightarrow \psi_{d}^{0}=1
$$

The large q limit of expected values is completely determined by the trivial multiplicity in a factorization statistic.

Corollary (H. 2017)

Suppose P is a factorization statistic, then

$$
\lim _{q \rightarrow \infty} E_{d}(P)=\langle P, 1\rangle
$$

Pf:

$$
E_{d}(P)=\sum_{k=0}^{d-1} \frac{\left\langle P, \psi_{d}^{k}\right\rangle}{q^{k}} \Longrightarrow \lim _{q \rightarrow \infty} E_{d}(P)=\left\langle P, \psi_{d}^{0}\right\rangle=\langle P, 1\rangle
$$

Sign Representation

Where is the sign representation Sgn?

Theorem

For all $d \geq 1$,

$$
\left\langle\operatorname{sgn}, \psi_{d}^{k}\right\rangle= \begin{cases}1 & k=\lfloor d / 2\rfloor \\ 0 & \text { otherwise }\end{cases}
$$

That is, $H^{2\lfloor d / 2\rfloor}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$ is the only cohomological degree with a sign component.

Also computed by Carlitz (1932), Hanlon (1990), Lehrer (1999).

Even Type

Let \mathcal{E} be the factorization statistic

$$
\mathcal{E}(f)= \begin{cases}1 & \left.\lambda_{f} \text { is even (} f \text { has even type }\right) \\ 0 & \text { otherwise }\end{cases}
$$

$E_{d}(\mathcal{E})$ is the prob. of a random $f \in \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right)$ having an even type.

First guess $E_{d}(\mathcal{E}) \approx \frac{1}{2}$.

$$
\mathcal{E}=\frac{1}{2}(1+\operatorname{sgn}) \Longrightarrow E_{d}(\mathcal{E})=\frac{1}{2}+\frac{1}{2 q^{\lfloor d / 2\rfloor}}
$$

Thus there is a slight bias toward an even type!

Expected Roots

Let R be the "number of roots" factorization statistic.
R is the character of the permutation rep. $\mathbb{Q}[d]$.

$$
R=1+\chi_{\mathrm{Std}}
$$

Expect one \mathbb{F}_{q}-root for random deg. d poly. when q is large.

Expected Roots

$$
\begin{aligned}
E_{d}(R) & =1+\frac{1}{q}+\frac{1}{q^{2}}+\ldots+\frac{1}{q^{d-1}} \quad \text { (generating functions) } \\
& =\sum_{k=0}^{d-1} \frac{\left\langle R, \psi_{d}^{k}\right\rangle}{q^{k}} \\
& =\left\langle 1, \psi_{d}^{0}\right\rangle+\frac{\left\langle\chi_{\mathrm{Std}}, \psi_{d}^{1}\right\rangle}{q}+\frac{\left\langle\chi_{\mathrm{Std}}, \psi_{d}^{2}\right\rangle}{q^{2}}+\ldots+\frac{\left\langle\chi_{\mathrm{Std}}, \psi_{d}^{d-1}\right\rangle}{q^{d-1}} \\
& \left\langle 1, \psi_{d}^{0}\right\rangle=1 \quad\left\langle\chi_{\mathrm{Std}}, \psi_{d}^{k}\right\rangle=1 \quad 1 \leq k \leq d-1,
\end{aligned}
$$

Thank you!

